*** Welcome to piglix ***

Neptunium dioxide

Neptunium(IV) oxide
Np4+: __ O2−: __
Names
IUPAC name
Neptunium(IV) oxide
Other names
Neptunium oxide, Neptunium dioxide
Identifiers
ECHA InfoCard 100.031.651
PubChem CID
Properties
NpO2
Molar mass 269 g/mol
Appearance Green cubic crystals
Density 11.1 g/cm3
Melting point 2,800 °C; 5,070 °F; 3,070 K
Structure
cubic crystal system, cF12
Fm3m, #225
Np, 8, cubic
O, 4, tetrahedral
Thermochemistry
19.19 ± 0.1 cal·mol−1·K−1
(80.3 ± 0.4 J·mol−1·K−1)
−256.7 ± 0.6 kcal·mol−1
(−1074 ± 3 kJ·mol−1)
Related compounds
Other anions
Neptunium(III) chloride
Neptunium(IV) chloride
Other cations
Uranium(VI) oxide
Plutonium(IV) oxide
Promethium(III) oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Neptunium(IV) oxide, or neptunium dioxide, is a radioactive, olive green cubic crystalline solid with the formula NpO2. It is a common product of plutonium fission, and emits both α- and γ-particles.

Industrially, neptunium dioxide is formed from the precipitation of neptunium(IV) oxalate from a neptunium feed solution with oxalic acid, followed by calcination to neptunium dioxide. The neptunium feed solution (which includes varying oxidation states of neptunium) is reduced to a predominately neptunium(IV) solution via ascorbic acid prior to the addition of oxalic acid. A hydrazine inhibitor is initially added to the neptunium feed solution to protect the neptunium and ascorbic acid from decay.

Extrapolated and balanced from "The Production of Neptunium Dioxide" by J. A. Porter

Np4+ + Np5+ + Np6+ + HNO3 + C6H8O6 → 3 Np4+ + C6H6O6 + H2 + HNO3

Np4+ + C2O4H2 → Np(C2O4) • 6H2O + 2H

Np(C2O4) • 6H2O + Δ → Np(C2O4)

Np(C2O4) + Δ → NpO2 + 2CO2

Neptunium dioxide can also be formed effectively from precipitation of neptunium(IV) peroxide, but the oxalate reduction has been found to be more industrially efficient.

As a byproduct of nuclear waste, neptunium dioxide can be purified by fluorination, followed by reduction with excess calcium in the presence of iodine. However, the aforementioned synthesis yields a quite pure solid, with less than 0.3% weight of impurities. Generally, further purification is unnecessary.

Neptunium dioxide contributes to the α-decay of 241Am, reducing its usual half-life an untested but appreciable amount. The compound has an interestingly low specific heat capacity (900 K, compared with uranium dioxide's specific head capacity of 1400 K), an abnormality theorized to stem from its 5f electron count. Another unique trait of neptunium dioxide is its "mysterious low-temperature ordered phase". Mentioned above, it references an abnormal level of order for an actinitde dioxide complex at low temperature. Further discussion of such topics could indicate useful physical trends in the actinides.


...
Wikipedia

...