Natural language understanding (NLU) is a subtopic of natural language processing in artificial intelligence that deals with machine reading comprehension. NLU is considered an AI-hard problem.
The process of disassembling and parsing input is more complex than the reverse process of assembling output in natural language generation because of the occurrence of unknown and unexpected features in the input and the need to determine the appropriate syntactic and semantic schemes to apply to it, factors which are pre-determined when outputting language.
There is considerable commercial interest in the field because of its application to news-gathering, text categorization, voice-activation, archiving, and large-scale content-analysis.
The program STUDENT, written in 1964 by Daniel Bobrow for his PhD dissertation at MIT is one of the earliest known attempts at natural language understanding by a computer. Eight years after John McCarthy coined the term artificial intelligence, Bobrow's dissertation (titled Natural Language Input for a Computer Problem Solving System) showed how a computer can understand simple natural language input to solve algebra word problems.
A year later, in 1965, Joseph Weizenbaum at MIT wrote ELIZA, an interactive program that carried on a dialogue in English on any topic, the most popular being psychotherapy. ELIZA worked by simple parsing and substitution of key words into canned phrases and Weizenbaum sidestepped the problem of giving the program a database of real-world knowledge or a rich lexicon. Yet ELIZA gained surprising popularity as a toy project and can be seen as a very early precursor to current commercial systems such as those used by Ask.com.