Natural gas, like many other commodities, can be stored for an indefinite period of time in natural gas storage facilities for later consumption.
Gas storage is principally used to meet load variations. Gas is injected into storage during periods of low demand and withdrawn from storage during periods of peak demand. It is also used for a variety of secondary purposes, including:
Characteristics of underground storage facilities need to be defined and measured. A number of volumetric measures have been put in place for that purpose:
The measurements above are not fixed for a given storage facility. For example, deliverability depends on several factors including the amount of gas in the reservoir and the pressure etc. Generally, a storage facility’s deliverability rate varies directly with the total amount of gas in the reservoir. It is at its highest when the reservoir is full and declines as gas is withdrawn. The injection capacity of a storage facility is also variable and depends on factors similar to those that affect deliverability. The injection rate varies inversely with the total amount of gas in storage. It is at its highest when the reservoir is nearly empty and declines as more gas is injected. The storage facility operator may also change operational parameters. This would allow, for example, the storage capacity maximum to be increased, the withdrawal of base gas during very high demand or reclassifying base gas to working gas if technological advances or engineering procedures allow.
The most important type of gas storage is in underground reservoirs. There are three principal types — depleted gas reservoirs, aquifer reservoirs and salt cavern reservoirs. Each of these types has distinct physical and economic characteristics which govern the suitability of a particular type of storage type for a given application.
These are the most prominent and common form of underground storage. They are the reservoir formations of natural gas fields that have produced all their economically recoverable gas. The depleted reservoir formation is readily capable of holding injected natural gas. Using such a facility is economically attractive because it allows the re-use, with suitable modification, of the extraction and distribution infrastructure remaining from the productive life of the gas field which reduces the start-up costs. Depleted reservoirs are also attractive because their geological and physical characteristics have already been studied by geologists and petroleum engineers and are usually well known. Consequently, depleted reservoirs are generally the cheapest and easiest to develop, operate, and maintain of the three types of underground storage.