*** Welcome to piglix ***

Nanotribology


Nanotribology is the branch of tribology that studies friction, wear, adhesion and lubrication phenomena at the nanoscale, where atomic interactions and quantum effects are not negligible. The aim of this discipline is characterizing and modifying surfaces for both scientific and technological purposes.

Historically, nanotribological research includes direct investigation with microscopy techniques, such as Scanning Tunneling Microscope (STM), Atomic-Force Microscope (AFM) and Surface Forces Apparatus, (SFA) used to analyze surfaces with extremely high resolution, and thanks to the development of computational methods and power surfaces, we can study these phenomena indirectly as well.

Changing the topology of surfaces at the nanoscale, friction can be either reduced or enhanced more intensively than macroscopic lubrication and adhesion; in this way, superlubrication and superadhesion can be achieved. In micro- and nano-mechanical devices problems of friction and wear, that are critical due to the extremely high surface volume ratio, can be solved covering moving parts with super lubricant coatings. On the other hand, where adhesion is an issue, nanotribological techniques offer a possibility to overcome such difficulties.

Friction and wear have been technological issues since ancient periods. On the one hand, the scientific approach of the last centuries towards the comprehension of the underlying mechanisms was focused on macroscopic aspects of tribology. On the other hand, in nanotribology, the systems studied are composed of nanometric structures, where volume forces (such as those related to mass and gravity) can often be considered negligible compared to surface forces. Scientific equipment to study such systems have been developed only in the second half of the 20th century. In 1969 the very first method to study the behavior of a molecularly thin liquid film sandwiched between two smooth surfaces through the SFA was developed. From this starting point, in 1980s researchers would employ other techniques to investigate solid state surfaces at the atomic scale.


...
Wikipedia

...