N = 4 supersymmetric Yang–Mills (SYM) theory is a mathematical and physical model created to study particles through a simple system, similar to string theory, with conformal symmetry. It is a simplified toy theory based on Yang–Mills theory that does not describe the real world, but is useful because it can act as a proving ground for approaches for attacking problems in more complex theories. It describes a universe containing boson fields and fermion fields which are related by 4 supersymmetries (this means that swapping boson, fermion and scalar fields in a certain way leaves the predictions of the theory invariant). It is one of the simplest (because it has no free parameters except for the gauge group) and one of the few finite quantum field theories in 4 dimensions. It can be thought of as the most symmetric field theory that does not involve gravity.
The Lagrangian for the theory is
where and indices i,j = 1, ..., 6 as well as a, b = 1, ..., 4. represents the structure constants of the particular gauge group. represents the structure constants of the R-symmetry group , which rotates the 4 supersymmetries. As a consequence of the nonrenormalization theorems, this supersymmetric field theory is in fact a superconformal field theory.