*** Welcome to piglix ***

NAS Benchmarks

NAS Parallel Benchmarks
Original author(s) NASA Numerical Aerodynamic Simulation Program
Developer(s) NASA Advanced Supercomputing Division
Stable release
3.3.1
Development status Active
Platform Cross-platform
Website www.nas.nasa.gov/Software/NPB/

The NAS Parallel Benchmarks (NPB) are a set of benchmarks targeting performance evaluation of highly parallel supercomputers. They are developed and maintained by the NASA Advanced Supercomputing (NAS) Division (formerly the NASA Numerical Aerodynamic Simulation Program) based at the NASA Ames Research Center. NAS solicits performance results for NPB from all sources.

Traditional benchmarks that existed before NPB, such as the Livermore loops, the LINPACK Benchmark and the NAS Kernel Benchmark Program, were usually specialized for vector computers. They generally suffered from inadequacies including parallelism-impeding tuning restrictions and insufficient problem sizes, which rendered them inappropriate for highly parallel systems. Equally unsuitable were full-scale application benchmarks due to high porting cost and unavailability of automatic software parallelization tools. As a result, NPB were developed in 1991 and released in 1992 to address the ensuing lack of benchmarks applicable to highly parallel machines.

The first specification of NPB recognized that the benchmarks should feature

In the light of these guidelines, it was deemed the only viable approach to use a collection of "paper-and-pencil" benchmarks that specified a set of problems only algorithmically and left most implementation details to the implementer's discretion under certain necessary limits.

NPB 1 defined eight benchmarks, each in two problem sizes dubbed Class A and Class B. Sample codes written in Fortran 77 were supplied. They used a small problem size Class S and were not intended for benchmarking purposes.

Since its release, NPB 1 displayed two major weaknesses. Firstly, due to its "paper-and-pencil" specification, computer vendors usually highly tuned their implementations so that their performance became difficult for scientific programmers to attain. Secondly, many of these implementation were proprietary and not publicly available, effectively concealing their optimizing techniques. Secondly, problem sizes of NPB 1 lagged behind the development of supercomputers as the latter continued to evolve.


...
Wikipedia

...