The Rubik's Cube is the original and best known of the three-dimensional sequential move puzzles. There have been many virtual implementations of this puzzle in software. It is a natural extension to create sequential move puzzles in more than three dimensions. Although no such puzzle could ever be physically constructed, the rules of how they operate are quite rigorously defined mathematically and are analogous to the rules found in three-dimensional geometry. Hence, they can be simulated by software. As with the mechanical sequential move puzzles, there are records for solvers, although not yet the same degree of competitive organisation.
For comparison purposes, the data relating to the standard 33 Rubik cube is as follows;
Number of achievable combinations
There is some debate over whether the face-centre cubies should be counted as separate pieces as they cannot be moved relative to each other. A different number of pieces may be given in different sources. In this article the face-centre cubies are counted as this makes the arithmetical sequences more consistent and they can certainly be rotated, a solution of which requires algorithms. However, the cubie right in the middle is not counted because it has no visible stickers and hence requires no solution. Arithmetically we should have
But P is always one short of this (or the n-dimensional extension of this formula) in the figures given in this article because C (or the corresponding highest-dimension polytope, for higher dimensions) is not being counted.