*** Welcome to piglix ***

Music Genome Project


The Music Genome Project was first conceived by Will Glaser and Tim Westergren in late 1999. In January 2000, they joined forces with Jon Kraft to found Savage Beast Technologies to bring their idea to market. The Music Genome Project is an effort to "capture the essence of music at the most fundamental level" using over 450 attributes to describe songs and a complex mathematical algorithm to organize them. The Music Genome Project is currently made up of 5 sub-genomes: Pop/Rock, Hip-Hop/Electronica, Jazz, World Music, and Classical. Under the direction of Nolan Gasser and a team of musicological experts, the initial attributes were later refined and extended.

A given song is represented by a vector containing values for approximately 450 "genes" (analogous to trait-determining genes for organisms in the field of genetics, although it has been argued that this methodology bears greater resemblance to phylogeny). Each gene corresponds to a characteristic of the music, for example, gender of lead vocalist, prevalent use of groove, level of distortion on the electric guitar, type of background vocals, etc. Rock and pop songs have 150 genes, rap songs have 350, and jazz songs have approximately 400. Other genres of music, such as world and classical music, have 300–450 genes. The system depends on a sufficient number of genes to render useful results. Each gene is assigned a number between 0 and 5, in half-integer increments. The Music Genome Project's database is built using a methodology that includes the use of precisely defined terminology, a consistent frame of reference, redundant analysis, and ongoing quality control to ensure that data integrity remains reliably high.

Given the vector of one or more songs, a list of other similar songs is constructed using what the company calls its "matching algorithm". Each song is analyzed by a musician in a process that takes 20 to 30 minutes per song. Ten percent of songs are analyzed by more than one musician to ensure conformity with the in-house standards and statistical reliability.


...
Wikipedia

...