*** Welcome to piglix ***

Murine polyomavirus

Murine polyomavirus
A rendering of an icosahedral viral capsid comprising 72 pentamers of VP1, colored such that areas of the surface closer to the interior center appear blue and areas further away appear red.
The capsid protein VP1 assembled into an icosahedral capsid structure comprising 72 pentamers, colored by distance from the interior center. From PDB: 1SIE​.
Virus classification
Group: Group I (dsDNA)
Family: Polyomaviridae
Genus: Alphapolyomavirus
Species: Murine polyomavirus

Murine polyomavirus (also known as mouse polyomavirus, Polyomavirus muris, or Mus musculus polyomavirus 1, and in older literature as SE polyoma or parotid tumor virus; abbreviated MPyV) is an unenveloped double-stranded DNA virus of the polyomavirus family. The first member of the family discovered, it was originally identified by accident in the 1950s. A component of mouse leukemia extract capable of causing tumors, particularly in the parotid gland, in newborn mice was reported by Ludwik Gross in 1953 and identified as a virus by Sarah Stewart and Bernice Eddy at the National Cancer Institute, after whom it was once called "SE polyoma". Stewart and Eddy would go on to study related polyomaviruses such as SV40 that infect primates, including humans. These discoveries were widely reported at the time and formed the early stages of understanding of oncoviruses.

MPyV is primarily spread among mice via the intranasal route and is shed in urine. Genetic susceptibility to MPyV infection among mice varies significantly, and not all MPyV strains are oncogenic. In general, only newborns and immunosuppressed mice (usually transgenic) develop tumors upon infection; although originally observed as a cause of parotid gland tumors, the virus may induce solid tumors in a wide variety of tissue types of both epithelial and mesenchymal origin. Although viruses in circulation among feral mice can be tumorigenic, under natural conditions the virus does not cause tumors; maternal antibodies have been shown to be critical in protecting neonates. It has been described as rare in modern laboratory mouse research colonies.


...
Wikipedia

...