The multitrait-multimethod (MTMM) matrix is an approach to examining construct validity developed by Campbell and Fiske (1959). It organizes convergent and discriminant validity evidence for comparison of how a measure relates to other measures.
Multiple traits are used in this approach to examine (a) similar or (b) dissimilar traits ( constructs), as to establish convergent and discriminant validity between traits. Similarly, multiple methods are used in this approach to examine the differential effects (or lack thereof) caused by method specific variance.
There are six major considerations when examining a construct's validity through the MTMM matrix, which are as follows:
The example below provides a prototypical matrix and what the correlations between measures mean. The diagonal line is typically filled in with a reliability coefficient of the measure (e.g. alpha coefficient). Descriptions in brackets [] indicate what is expected when the validity of the construct (e.g., depression or anxiety) and the validities of the measures are all high.
[low, less than monotrait]
In this example the first row and the first column display the trait being assessed (i.e. anxiety or depression) as well as the method of assessing this trait (i.e. interview or survey as measured by fictitious measures). The term heteromethod indicates that in this cell the correlation between two separate methods is being reported. Monomethod indicates the opposite, in that the same method is being used (e.g. interview, interview). Heterotrait indicates that the cell is reporting two supposedly different traits. Monotrait indicates the opposite- that the same trait is being used.
In evaluating an actual matrix one wishes to examine the proportion of variance shared amongst traits and methods as to establish a sense of how much method specific variance is induced by the measurement method, as well as provide a look at how unique the trait is, as compared to another trait.
That is, for example, the trait should matter more than the specific method of measuring. For example, if a person is measured as being highly depressed by one measure, then another type of measure should also indicate that the person is highly depressed. On the other hand, people who appear highly depressed on the Beck Depression Inventory should not necessarily get high anxiety scores on Beck's Anxiety Inventory. Since the inventories were written by the same person, and are similar in style, there might be some correlation, but this similarity in method should not affect the scores much, so the correlations between these measures of different traits should be low.