*** Welcome to piglix ***

Multithreading (computer architecture)


In computer architecture, multithreading is the ability of a central processing unit (CPU) or a single core in a multi-core processor to execute multiple processes or threads concurrently, appropriately supported by the operating system. This approach differs from multiprocessing, as with multithreading the processes and threads share the resources of a single or multiple cores: the computing units, the CPU caches, and the translation lookaside buffer (TLB).

Where multiprocessing systems include multiple complete processing units, multithreading aims to increase utilization of a single core by using thread-level as well as instruction-level parallelism. As the two techniques are complementary, they are sometimes combined in systems with multiple multithreading CPUs and in CPUs with multiple multithreading cores.

The multithreading paradigm has become more popular as efforts to further exploit instruction-level parallelism have stalled since the late 1990s. This allowed the concept of throughput computing to re-emerge from the more specialized field of transaction processing; even though it is very difficult to further speed up a single thread or single program, most computer systems are actually multitasking among multiple threads or programs. Thus, techniques that improve the throughput of all tasks result in overall performance gains.

Two major techniques for throughput computing are multithreading and multiprocessing.

If a thread gets a lot of cache misses, the other threads can continue taking advantage of the unused computing resources, which may lead to faster overall execution as these resources would have been idle if only a single thread were executed. Also, if a thread cannot use all the computing resources of the CPU (because instructions depend on each other's result), running another thread may prevent those resources from becoming idle.


...
Wikipedia

...