*** Welcome to piglix ***

Multiplier–accumulator


In computing, especially digital signal processing, the multiply–accumulate operation is a common step that computes the product of two numbers and adds that product to an accumulator. The hardware unit that performs the operation is known as a multiplier–accumulator (MAC, or MAC unit); the operation itself is also often called a MAC or a MAC operation. The MAC operation modifies an accumulator a:

When done with floating point numbers, it might be performed with two roundings (typical in many DSPs), or with a single rounding. When performed with a single rounding, it is called a fused multiply–add (FMA) or fused multiply–accumulate (FMAC).

Modern computers may contain a dedicated MAC, consisting of a multiplier implemented in combinational logic followed by an adder and an accumulator register that stores the result. The output of the register is fed back to one input of the adder, so that on each clock cycle, the output of the multiplier is added to the register. Combinational multipliers require a large amount of logic, but can compute a product much more quickly than the method of shifting and adding typical of earlier computers. The first processors to be equipped with MAC units were digital signal processors, but the technique is now also common in general-purpose processors.

When done with integers, the operation is typically exact (computed modulo some power of two). However, floating-point numbers have only a certain amount of mathematical precision. That is, digital floating-point arithmetic is generally not associative or distributive. (See Floating point#Accuracy problems.) Therefore, it makes a difference to the result whether the multiply–add is performed with two roundings, or in one operation with a single rounding (a fused multiply–add). IEEE 754-2008 specifies that it must be performed with one rounding, yielding a more accurate result.


...
Wikipedia

...