*** Welcome to piglix ***

Multiplication algorithm


A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are in use. Efficient multiplication algorithms have existed since the advent of the decimal system.

The grid method (or box method) is an introductory method for multiple-digit multiplication that is often taught to pupils at primary school or elementary school level. It has been a standard part of the national primary-school mathematics curriculum in England and Wales since the late 1990s.

Both factors are broken up ("partitioned") into their hundreds, tens and units parts, and the products of the parts are then calculated explicitly in a relatively simple multiplication-only stage, before these contributions are then totalled to give the final answer in a separate addition stage.

The calculation 34 × 13, for example, could be computed using the grid:

followed by addition to obtain 442, either in a single sum (see right), or through forming the row-by-row totals (300 + 40) + (90 + 12) = 340 + 102 = 442.

This calculation approach (though not necessarily with the explicit grid arrangement) is also known as the partial products algorithm. Its essence is the calculation of the simple multiplications separately, with all addition being left to the final gathering-up stage.

The grid method can in principle be applied to factors of any size, although the number of sub-products becomes cumbersome as the number of digits increases. Nevertheless, it is seen as a usefully explicit method to introduce the idea of multiple-digit multiplications; and, in an age when most multiplication calculations are done using a calculator or a spreadsheet, it may in practice be the only multiplication algorithm that some students will ever need.

If a positional numeral system is used, a natural way of multiplying numbers is taught in schools as long multiplication, sometimes called grade-school multiplication, sometimes called Standard Algorithm: multiply the by each digit of the and then add up all the properly shifted results. It requires memorization of the multiplication table for single digits.

This is the usual algorithm for multiplying larger numbers by hand in base 10. Computers initially used a very similar shift and add algorithm in base 2, but modern processors have optimized circuitry for fast multiplications using more efficient algorithms, at the price of a more complex hardware realization. A person doing long multiplication on paper will write down all the products and then add them together; an abacus-user will sum the products as soon as each one is computed.


...
Wikipedia

...