Multidimensional networks, a special type of multilayer network, are networks with multiple kinds of relations. Increasingly sophisticated attempts to model real-world systems as multidimensional networks have yielded valuable insight in the fields of social network analysis, economics, urban and international transport, ecology, psychology, medicine, biology, commerce, climatology, physics, computational neuroscience, operations management, and finance.
The rapid exploration of complex networks in recent years has been dogged by a lack of standardized naming conventions, as various groups use overlapping and contradictory terminology to describe specific network configurations (e.g., multiplex, multilayer, multilevel, multidimensional, multirelational, interconnected). Formally, multidimensional networks are edge-labeled multigraphs. The term "fully multidimensional" has also been used to refer to a multipartite edge-labeled multigraph. Multidimensional networks have also recently been reframed as specific instances of multilayer networks. In this case, there are as many layers as there are dimensions, and the links between nodes within each layer are simply all the links for a given dimension.
In elementary network theory, a network is represented by a graph in which is the set of nodes and the links between nodes, typically represented as a tuple of nodes . While this basic formalization is useful for analyzing many systems, real world networks often have added complexity in the form of multiple types of relations between system elements. An early formalization of this idea came through its application in the field of social network analysis (see, e.g., and papers on relational algebras in social networks) in which multiple forms of social connection between people were represented by multiple types of links.