*** Welcome to piglix ***

Multiclass classifier


Not to be confused with multi-label classification.

In machine learning, multiclass or multinomial classification is the problem of classifying instances into one of three or more classes. (Classifying instances into one of the two classes is called binary classification.)

While some classification algorithms naturally permit the use of more than two classes, others are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.

Multiclass classification should not be confused with multi-label classification, where multiple labels are to be predicted for each instance.

The existing multi-class classification techniques can be categorized into (i) Transformation to binary (ii) Extension from binary and (iii) Hierarchical classification.

This section discusses strategies for reducing the problem of multiclass classification to multiple binary classification problems. It can be categorized into One vs Rest and One vs One. The techniques developed based on reducing the multi-class problem into multiple binary problems can also be called problem transformation techniques.

The one-vs.-rest (or one-vs.-all, OvA or OvR, one-against-all, OAA) strategy involves training a single classifier per class, with the samples of that class as positive samples and all other samples as negatives. This strategy requires the base classifiers to produce a real-valued confidence score for its decision, rather than just a class label; discrete class labels alone can lead to ambiguities, where multiple classes are predicted for a single sample.

In pseudocode, the training algorithm for an OvA learner constructed from a binary classification learner L is as follows:

Making decisions means applying all classifiers to an unseen sample x and predicting the label k for which the corresponding classifier reports the highest confidence score:

Although this strategy is popular, it is a heuristic that suffers from several problems. Firstly, the scale of the confidence values may differ between the binary classifiers. Second, even if the class distribution is balanced in the training set, the binary classification learners see unbalanced distributions because typically the set of negatives they see is much larger than the set of positives.


...
Wikipedia

...