*** Welcome to piglix ***

Moufang polygon


In mathematics, Moufang polygons are a generalization by Jacques Tits of the Moufang planes studied by Ruth Moufang, and are irreducible buildings of rank two that admit the action of root groups. In a book on the topic, Tits and Weiss classify them all. An earlier theorem, proved independently by Tits and Weiss, showed that a Moufang polygon must be a generalized 3-gon, 4-gon, 6-gon, or 8-gon, so the purpose of the aforementioned book was to analyze these four cases.

A Moufang 3-gon can be identified with the incidence graph of a Moufang projective plane. In this identification, the points and lines of the plane correspond to the vertices of the building. Real forms of Lie groups give rise to examples which are the three main types of Moufang 3-gons. There are four real division algebras: the real numbers, the complex numbers, the quaternions, and the octonions, of dimensions 1,2,4 and 8, respectively. The projective plane over such a division algebra then gives rise to a Moufang 3-gon.

These projective planes correspond to the building attached to SL3(R), SL3(C), a real form of A5 and to a real form of E6, respectively.

In the first diagram the circled nodes represent 1-spaces and 2-spaces in a three-dimensional vector space. In the second diagram the circled nodes represent 1-space and 2-spaces in a 3-dimensional vector space over the quaternions, which in turn represent certain 2-spaces and 4-spaces in a 6-dimensional complex vector space, as expressed by the circled nodes in the A5 diagram. The fourth case — a form of E6 — is exceptional, and its analogue for Moufang 4-gons is a major feature of Weiss’s book.

Going from the real numbers to an arbitrary field, Moufang 3-gons can be divided into three cases as above. The split case in the first diagram exists over any field. The second case extends to all associative, non-commutative division algebras; over the reals these are limited to the algebra of quaternions, which has degree 2 (and dimension 4), but some fields admit central division algebras of other degrees. The third case involves ‘alternative’ division algebras (which satisfy a weakened form of the associative law), and a theorem of Bruck and Kleinfeld shows that these are Cayley-Dickson algebras. This concludes the discussion of Moufang 3-gons.


...
Wikipedia

...