*** Welcome to piglix ***

Motion perception


Motion perception is the process of inferring the speed and direction of elements in a scene based on visual, vestibular and proprioceptive inputs. Although this process appears straightforward to most observers, it has proven to be a difficult problem from a computational perspective, and extraordinarily difficult to explain in terms of neural processing.

Motion perception is studied by many disciplines, including psychology (i.e. visual perception), neurology, neurophysiology, engineering, and computer science.

The inability to perceive motion is called akinetopsia and it may be caused by a lesion to cortical area V5 in the extrastriate cortex. Neuropsychological studies of a patient who could not see motion, seeing the world in a series of static "frames" instead, suggested that visual area V5 in humans is homologous to motion processing area MT in primates.

Two or more stimuli that are switched on and off in alternation can produce two different motion percepts. The first, demonstrated in the figure to the right is "Beta movement", often used in billboard displays, in which an object is perceived as moving when, in fact, a series of stationary images is being presented. This is also termed "apparent motion" and is the basis of movies and television. However, at faster alternation rates, and if the distance between the stimuli is just right, an illusory "object" the same colour as the background is seen moving between the two stimuli and alternately occluding them. This is called the phi phenomenon and is an example of "pure" motion detection uncontaminated, as in Beta movement, by form cues.

This pure motion perception is referred to as "first-order" motion perception and is mediated by relatively simple "motion sensors" in the visual system, that have evolved to detect a change in luminance at one point on the retina and correlate it with a change in luminance at a neighbouring point on the retina after a short delay. Sensors that work this way have been referred to as either Hassenstein-Reichardt detectors after the scientists Bernhard Hassenstein and Werner Reichardt, who first modelled them, motion-energy sensors, or Elaborated Reichardt Detectors. These sensors detect motion by spatio-temporal correlation and are plausible models for how the visual system may detect motion. There is still considerable debate regarding the exact nature of this process.


...
Wikipedia

...