A motion simulator or motion platform is a mechanism that encapsulates occupants and creates the effect/feelings of being in a moving vehicle. A motion simulator can also be called a motion base, motion chassis or a motion seat. The movement is synchronous with visual display and is designed to add a tactile element to video gaming, simulation, and virtual reality. When motion is applied and synchronized to audio and video signals, the result is a combination of sight, sound, and touch. All full motion simulators move the entire occupant compartment and can convey changes in orientation and the effect of false gravitational forces. These motion cues trick the mind into thinking it is immersed in the simulated environment and experiencing kinematic changes in position, velocity, and acceleration. The mind's failure to accept the experience can result in motion sickness. Motion platforms can provide movement on up to six degrees of freedom: three rotational degrees of freedom (roll, pitch, yaw) and three translational or linear degrees of freedom (surge, heave, sway).
Motion simulators can be classified according to whether the occupant is controlling the vehicle, or whether the occupant is a passive rider, also referred to as a simulator ride or motion theater.
Historically, motion platforms have varied widely in scale and cost. Those in the category of amusement park rides and commercial and military aircraft simulators are at the high end of this spectrum; arcade style amusement devices fall into the middle of the spectrum, while smaller and lower-costing home-based motion platforms comprise the other end.
Modern motion platforms have become complicated machines, but they have simpler roots. Many of the early motion platforms were flight simulators used to train pilots. One of the first motion platforms, the Sanders Teacher, was created in 1910. The Sanders Teacher was an aircraft with control surfaces fitted to the ground by a simple universal joint. When wind was present, the pilot in training was able to use the control surfaces to move the simulator in the three rotational degrees of freedom. Around 1930, a large advance in motion platform technology was made with the creation of the Link Trainer. The Link Trainer used the control stick and external motors to control organ bellows located under the simulator. The bellows could inflate or deflate, causing the simulator to rotate with three degrees of freedom. In 1958 the Comet IV was designed using a three-degrees-of-freedom hydraulic system. After the Comet IV both the range of motion and the degrees of freedom exhibited by motion platforms was increased. The most expensive motion platforms utilize high-fidelity six-degrees-of-freedom motion, often coupled with advanced audio and visual systems. Today you will find motion platforms in many applications including: flight simulation, driving simulation, amusement rides, and even small home-based motion platforms.