*** Welcome to piglix ***

Mosfet


The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET). It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. Although FET is sometimes used when referring to MOSFET devices, other types of field-effect transistors also exist.

Although the MOSFET is a four-terminal device with source (S), gate (G), drain (D), and body (B) terminals, the body (or substrate) of the MOSFET is often connected to the source terminal, making it a three-terminal device like other field-effect transistors. Because these two terminals are normally connected to each other (short-circuited) internally, only three terminals appear in electrical diagrams.

The basic principle of the field-effect transistor was first patented by Julius Edgar Lilienfeld in 1925.

The main advantage of a MOSFET over a regular transistor is that it requires very little current to turn on (less than 1mA), while delivering a much higher current to a load (10 to 50A or more).

In enhancement mode MOSFETs, a voltage drop across the oxide induces a conducting channel between the source and drain contacts via the field effect. The term "enhancement mode" refers to the increase of conductivity with increase in oxide field that adds carriers to the channel, also referred to as the inversion layer. The channel can contain electrons (called an nMOSFET or nMOS), or holes (called a pMOSFET or pMOS), opposite in type to the substrate, so nMOS is made with a p-type substrate, and pMOS with an n-type substrate (see article on semiconductor devices). In the less common depletion mode MOSFET, detailed later on, the channel consists of carriers in a surface impurity layer of opposite type to the substrate, and conductivity is decreased by application of a field that depletes carriers from this surface layer.


...
Wikipedia

...