In mathematics, the Morrey–Campanato spaces (named after Charles B. Morrey, Jr. and Sergio Campanato) are Banach spaces which extend the notion of functions of bounded mean oscillation, describing situations where the oscillation of the function in a ball is proportional to some power of the radius other than the dimension. They are used in the theory of elliptic partial differential equations, since for certain values of , elements of the space are Hölder continuous functions over the domain .