*** Welcome to piglix ***

Monod-Wyman-Changeux model


In biochemistry, the Monod-Wyman-Changeux model (MWC model, also known as the symmetry model) describes allosteric transitions of proteins made up of identical subunits. It was proposed by Jean-Pierre Changeux based on his PhD experiments, and described by Jacques Monod, Jeffries Wyman, and Jean-Pierre Changeux. It stands in opposition to the sequential model.

The concept of two distinct symmetric states is the central postulate of the MWC model.The main idea of the model is that regulated proteins, such as many enzymes and receptors, exist in different interconvertible states in the absence of any regulator. The ratio of the different conformational states is determined by thermal equilibrium. This model, alternatively termed the MWC model, is defined by the following rules:

In the historical model, each allosteric unit, called a protomer (generally assumed to be a subunit), can exist in two different conformational states - designated 'R' (for relaxed) or 'T' (for tense) states. In any one molecule, all protomers must be in the same state. That is to say, all subunits must be in either the R or the T state. Proteins with subunits in different states are not allowed by this model. The R state has a higher affinity for the ligand than the T state. Because of that, although the ligand may bind to the subunit when it is in either state, the binding of a ligand will increase the equilibrium in favor of the R state.

Two equations can be derived, that express the fractional occupancy of the ligand binding site (Y) and the fraction of the proteins in the R state (R):


...
Wikipedia

...