Modeling and simulation (M&S) refers to using models – physical, mathematical, or otherwise logical representation of a system, entity, phenomenon, or process – as a basis for simulations – methods for implementing a model (either statically or) over time – to develop data as a basis for managerial or technical decision making. M&S supports analysis, experimentation, and training. As such, M&S can facilitate understanding a system's behavior without actually testing the system in the real world. For instance, to determine which type of spoiler would improve traction the most while designing a race car, a computer simulation of the car could be used to estimate the effect of different spoiler shapes on the coefficient of friction in a turn. Useful insights about different decisions in the design could be gleaned without actually building the car. In addition, simulation can support experimentation that occurs totally in software, or in human-in-the-loop environments where simulation represents systems or generates data needed to meet experiment objectives. Furthermore, simulation can be used to train persons using a virtual environment that would otherwise be difficult or expensive to produce.
The use of M&S within engineering is well recognized. Simulation technology belongs to the tool set of engineers of all application domains and has been included in the body of knowledge of engineering management. M&S helps to reduce costs, increase the quality of products and systems, and document and archive lessons learned.
M&S is a discipline on its own. Its many application domains often lead to the assumption that M&S is pure application. This is not the case and needs to be recognized by engineering management experts who want to use M&S. To ensure that the results of simulation are applicable to the real world, the engineering manager must understand the assumptions, conceptualizations, and implementation constraints of this emerging field.