*** Welcome to piglix ***

Model of hierarchical complexity


The model of hierarchical complexity is a framework for scoring how complex a behavior is, such as verbal reasoning or other cognitive tasks. It quantifies the order of hierarchical complexity of a task based on mathematical principles of how the information is organized, in terms of information science. This model has been developed by Michael Commons and others since the 1980s.

The model of hierarchical complexity (MHC) is a formal theory and a mathematical psychology framework for scoring how complex a behavior is. Developed by Michael Lamport Commons and colleagues, it quantifies the order of hierarchical complexity of a task based on mathematical principles of how the information is organized, in terms of information science. Its forerunner was the general stage model.

Behaviors that may be scored include those of individual humans or their social groupings (e.g., organizations, governments, societies), animals, or machines. It enables scoring the hierarchical complexity of task accomplishment in any domain. It is based on the very simple notions that higher order task actions:

It is cross-culturally and cross-species valid. The reason it applies cross-culturally is that the scoring is based on the mathematical complexity of the hierarchical organization of information. Scoring does not depend upon the content of the information (e.g., what is done, said, written, or analyzed) but upon how the information is organized.

The MHC is a non-mentalistic model of developmental stages. It specifies 16 orders of hierarchical complexity and their corresponding stages. It is different from previous proposals about developmental stage applied to humans; instead of attributing behavioral changes across a person's age to the development of mental structures or schema, this model posits that task sequences of task behaviors form hierarchies that become increasingly complex. Because less complex tasks must be completed and practiced before more complex tasks can be acquired, this accounts for the developmental changes seen, for example, in individual persons' performance of complex tasks. (For example, a person cannot perform arithmetic until the numeral representations of numbers are learned. A person cannot operationally multiply the sums of numbers until addition is learned).


...
Wikipedia

...