A cellular network or mobile network is a communication network where the last link is wireless. The network is distributed over land areas called cells, each served by at least one fixed-location transceiver, but more normally three cell sites or base stations. These base stations provide the cell with the network coverage which can be used for transmission of voice, data and others. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.
When joined together these cells provide radio coverage over a wide geographic area. This enables a large number of portable transceivers (e.g., mobile phones, pagers, etc.) to communicate with each other and with fixed transceivers and telephones anywhere in the network, via base stations, even if some of the transceivers are moving through more than one cell during transmission.
Cellular networks offer a number of desirable features:
Major telecommunications providers have deployed voice and data cellular networks over most of the inhabited land area of the Earth. This allows mobile phones and mobile computing devices to be connected to the public switched telephone network and public Internet. Private cellular networks can be used for research or for large organizations and fleets, such as dispatch for local public safety agencies or a taxicab company.
In a cellular radio system, a land area to be supplied with radio service is divided into cells, in a pattern which depends on terrain and reception characteristics but which can consist of roughly hexagonal, square, circular or some other regular shapes, although hexagonal cells are conventional. Each of these cells is assigned with multiple frequencies (f1 – f6) which have corresponding radio base stations. The group of frequencies can be reused in other cells, provided that the same frequencies are not reused in adjacent neighboring cells as that would cause co-channel interference.