Minimax (sometimes MinMax or MM) is a decision rule used in decision theory, game theory, statistics and philosophy for minimizing the possible loss for a worst case (maximum loss) scenario. Originally formulated for two-player zero-sum game theory, covering both the cases where players take alternate moves and those where they make simultaneous moves, it has also been extended to more complex games and to general decision-making in the presence of uncertainty.
The maximin value of a player is the largest value that the player can be sure to get without knowing the actions of the other players. Its formal definition is:
Where:
Calculating the maximin value of a player is done in a worst-case approach: for each possible action of the player, we check all possible actions of the other players and determine the worst possible combination of actions - the one that gives player the smallest value. Then, we determine which action player can take in order to make sure that this smallest value is the largest possible.
For example, consider the following game for two players, where the first player ("row player") may choose any of three moves, labelled T, M, or B, and the second player ("column" player) may choose either of two moves, L or R. The result of the combination of both moves is expressed in a payoff table: