*** Welcome to piglix ***

Minimal surface of revolution


In mathematics, a minimal surface of revolution or minimum surface of revolution is a surface of revolution defined from two points in a half-plane, whose boundary is the axis of revolution of the surface. It is generated by a curve that lies in the half-plane and connects the two points; among all the surfaces that can be generated in this way, it is the one that minimizes the surface area. A basic problem in the calculus of variations is finding the curve between two points that produces this minimal surface of revolution.

A minimal surface of revolution is a subtype of minimal surface. A minimal surface is defined not as a surface of minimal area, but as a surface with a mean curvature of 0. Since a mean curvature of 0 is a necessary condition of a surface of minimal area, all minimal surfaces of revolution are minimal surfaces, but not all minimal surfaces are minimal surfaces of revolution. As a point forms a circle when rotated about an axis, finding the minimal surface of revolution is equivalent to finding the minimal surface passing through two circular wireframes. A physical realization of a minimal surface of revolution is soap film stretched between two parallel circular wires: the soap film naturally takes on the shape with least surface area.

If the half-plane containing the two points and the axis of revolution is given Cartesian coordinates, making the axis of revolution into the x-axis of the coordinate system, then the curve connecting the points may be interpreted as the graph of a function. If the Cartesian coordinates of the two given points are , , then the area of the surface generated by a continuous function may be expressed mathematically as


...
Wikipedia

...