*** Welcome to piglix ***

Minimal polynomial (field theory)


In field theory, a branch of mathematics, a minimal polynomial is defined relative to a field extension E/F and an element of the extension field E. The minimal polynomial of an element, if it exists, is a member of F[x], the ring of polynomials in the variable x with coefficients in F. Given an element α of E, let Jα be the set of all polynomials f(x) in F[x] such that f(α) = 0. The element α is called a root or zero of each polynomial in Jα. The set Jα is so named because it is an ideal of F[x]. The zero polynomial, whose every coefficient is 0, is in every Jα since 0αi = 0 for all α and i. This makes the zero polynomial useless for classifying different values of α into types, so it is excepted. If there are any non-zero polynomials in Jα, then α is called an algebraic element over F, and there exists a monic polynomial of least degree in Jα. This is the minimal polynomial of α with respect to E/F. It is unique and irreducible over F. If the zero polynomial is the only member of Jα, then α is called a transcendental element over F and has no minimal polynomial with respect to E/F.

Minimal polynomials are useful for constructing and analyzing field extensions. When α is algebraic with minimal polynomial a(x), the smallest field that contains both F and α is isomorphic to the quotient ring F[x]/⟨a(x)⟩, where ⟨a(x)⟩ is the ideal of F[x] generated by a(x). Minimal polynomials are also used to define conjugate elements.


...
Wikipedia

...