Microrheology is a technique used to measure the rheological properties of a medium, such as microviscosity, via the measurement of the trajectory of a flow tracer (a micrometre-sized particle). It is a new way of doing rheology, traditionally done using a rheometer. There are two types of microrheology: passive microrheology and active microrheology. Passive microrheology uses inherent thermal energy to move the tracers, whereas active microrheology uses externally applied forces, such as from a magnetic field or an optical tweezer, to do so. Microrheology can be further differentiated into 1- and 2-particle methods.
Passive microrheology uses the thermal energy (kT) to move the tracers, although recent evidence suggest that active random forces inside cells may instead move the tracers in a diffusive-like manner. The trajectories of the tracers are measured optically either by microscopy or by diffusing-wave spectroscopy (DWS). From the mean squared displacement with respect to time (noted MSD or <Δr2> ), one can calculate the visco-elastic moduli G′(ω) and G″(ω) using the generalized Stokes–Einstein relation (GSER). Here is a view of the trajectory of a particle of micrometer size.
Typical trajectory of a Brownian particle (simulation)
Two examples of MSD: one for a purely viscous fluid (free diffusion) and one for a viscolelastic fluid (trapped by elastic network)
Animation of a particle in a polymer-like network
Observing the MSD for a wide range of time scales gives information on the microstructure of the medium where are diffusing the tracers. If the tracers are having a free diffusion, one can deduce that the medium is purely viscous. If the tracers are having a sub-diffusive mean trajectory, it indicates that the medium presents some viscoelastic properties. For example, in a polymer network, the tracer may be trapped. The excursion δ of the tracer is related to the elastic modulus G′ with the relation G′ = kBT/(6πaδ2).