A microprobe is an instrument that applies a stable and well-focused beam of charged particles (electrons or ions) to a sample.
When the primary beam consists of accelerated electrons, the probe is termed an electron microprobe, when the primary beam consists of accelerated ions, the term ion microprobe is used. The term microprobe may also be applied to optical analytical techniques, when the instrument is set up to analyse micro samples or micro areas of larger specimens. Such techniques include micro Raman spectroscopy, micro infrared spectroscopy and micro LIBS. All of these techniques involve modified optical microscopes to locate the area to be analysed, direct the probe beam and collect the analytical signal.
A laser microprobe is a mass spectrometer that uses ionization by a pulsed laser and subsequent mass analysis of the generated ions.
Scientists use this beam of charged particles to determine the elemental composition of solid materials (minerals, glasses, metals). The chemical composition of the target can be found from the elemental data extracted through emitted X-rays (in the case where the primary beam consists of charged electrons) or measurement of an emitted secondary beam of material sputtered from the target (in the case where the primary beam consists of charged ions).
When the ion energy is in the range of a few tens of keV (kilo-electronvolt) these microprobes are usually called FIB (Focused ion beam). An FIB makes a small portion of the material into a plasma; the analysis is done by the same basic techniques as the ones used in mass spectrometry.