MicroRNA sequencing (miRNA-seq), a type of RNA-Seq, is the use of next-generation sequencing or massively parallel high-throughput DNA sequencing to sequence microRNAs, also called miRNAs. miRNA-seq differs from other forms of RNA-seq in that input material is often enriched for small RNAs. miRNA-seq allows researchers to examine tissue-specific expression patterns, disease associations, and isoforms of miRNAs, and to discover previously uncharacterized miRNAs. Evidence that dysregulated miRNAs play a role in diseases such as cancer has positioned miRNA-seq to potentially become an important tool in the future for diagnostics and prognostics as costs continue to decrease. Like other miRNA profiling technologies, miRNA-Seq has both advantages (sequence-independence, coverage) and disadvantages (high cost, infrastructure requirements, run length, and potential artifacts).
MicroRNAs (miRNAs) are a family of small ribonucleic acids, 21-25 nucleotides in length, that modulate protein expression through transcript degradation, inhibition of translation, or sequestering transcripts. The first miRNA to be discovered, lin-4, was found in a genetic mutagenesis screen to identify molecular elements controlling post-embryonic development of the nematode Caenorhabditis elegans. The lin-4 gene encoded a 22 nucleotide RNA with conserved complementary binding sites in the 3’-untranslated region of the lin-14 mRNA transcript and downregulated LIN-14 protein expression. miRNAs are now thought to be involved in the regulation of many developmental and biological processes, including haematopoiesis (miR-181 in Mus musculus), lipid metabolism (miR-14 in Drosophila melanogaster) and neuronal development (lsy-6 in Caenorhabditis elegans). These discoveries necessitated development of techniques able to identify and characterize miRNAs, such as miRNA-seq.