In cryptography, a message authentication code (MAC) is a short piece of information used to authenticate a message—in other words, to confirm that the message came from the stated sender (its authenticity) and has not been changed (sometimes known as a tag). The MAC value protects both a message's data integrity as well as its authenticity, by allowing verifiers (who also possess the secret key) to detect any changes to the message content.
Informally, a message authentication code consists of three algorithms:
For a secure unforgeable message authentication code, it should be computationally infeasible to compute a valid tag of the given message without knowledge of the key, even if for the worst case, we assume the adversary can forge the tag of any message except the given one.
Formally, A Message Authentication Code (MAC) is a triple of efficient algorithms (G, S, V) satisfying:
A MAC is unforgeable if for every efficient adversary A
where AS(k, · ) denotes that A has access to the oracle S(k, · ), and Query(AS(k, · ), 1n) denotes the set of the queries on S made by A, which knows n. Clearly we require that any adversary cannot directly query the string x on S, since otherwise she can easily obtain a valid tag.
While MAC functions are similar to cryptographic hash functions, they possess different security requirements. To be considered secure, a MAC function must resist existential forgery under chosen-plaintext attacks. This means that even if an attacker has access to an oracle which possesses the secret key and generates MACs for messages of the attacker's choosing, the attacker cannot guess the MAC for other messages (which were not used to query the oracle) without performing infeasible amounts of computation.
MACs differ from digital signatures as MAC values are both generated and verified using the same secret key. This implies that the sender and receiver of a message must agree on the same key before initiating communications, as is the case with symmetric encryption. For the same reason, MACs do not provide the property of non-repudiation offered by signatures specifically in the case of a network-wide shared secret key: any user who can verify a MAC is also capable of generating MACs for other messages. In contrast, a digital signature is generated using the private key of a key pair, which is public-key cryptography. Since this private key is only accessible to its holder, a digital signature proves that a document was signed by none other than that holder. Thus, digital signatures do offer non-repudiation. However, non-repudiation can be provided by systems that securely bind key usage information to the MAC key; the same key is in the possession of two people, but one has a copy of the key that can be used for MAC generation while the other has a copy of the key in a hardware security module that only permits MAC verification. This is commonly done in the finance industry.