*** Welcome to piglix ***

Mesenchymal–epithelial transition


A mesenchymal–epithelial transition (MET) is a reversible biological process that involves the transition from motile, multipolar or spindle-shaped mesenchymal cells to planar arrays of polarized cells called epithelia. MET is the reverse process of epithelial–mesenchymal transition (EMT). Unlike epithelial cells – which are stationary and characterized by an apical-basal polarity, tight junctions, and expression of cell-cell adhesion markers such as E-cadherin, mesenchymal cells do not make mature cell-cell contacts, can invade through the extracellular matrix, and express markers such as vimentin, fibronectin, N-cadherin, Twist, and Snail. METs occur in normal development, cancer metastasis, and induced pluripotent stem cell reprogramming.

During embryogenesis and early development, cells switch back and forth between different cellular phenotypes via MET and its reverse process, epithelial–mesenchymal transition (EMT). Developmental METs have been studied most extensively in embryogenesis during nephrogenesis, but also occurs in somitogenesis, cardiogenesis, and hepatogenesis. While the mechanism in which MET occurs during each organ morphogenesis is similar in that epithelium-associated genes are upregulated and mesenchyme-associated genes are downregulated, each process has a unique signaling pathway to induce MET and these changes in gene expression profiles.

One example of this, the most well described of the developmental METs, is kidney ontogenesis. The mammalian kidney is primarily formed by two early structures: the ureteric bud and the nephrogenic mesenchyme, which form the collecting duct and nephrons respectively (see kidney development for more details). During kidney ontogenesis, a reciprocal induction of the ureteric bud epithelium and nephrogenic mesenchyme occurs. As the ureteric bud grows out of the Wolffian duct, the nephrogenic mesenchyme induces the ureteric bud to branch. Concurrently, the ureteric bud induces the nephrogenic mesenchyme to condense around the bud and undergo MET to form the renal epithelium, which ultimately forms the nephron. Growth factors, integrins, cell adhesion molecules, and protooncogenes, such as c-ret, c-ros, and c-met, mediate the reciprocal induction in metanephrons and consequent MET.


...
Wikipedia

...