Memory effect, also known as battery effect, lazy battery effect, or battery memory, is an effect observed in nickel-cadmium and nickel–metal hydride rechargeable batteries that causes them to hold less charge. It describes the situation in which nickel-cadmium batteries gradually lose their maximum energy capacity if they are repeatedly recharged after being only partially discharged. The battery appears to "remember" the smaller capacity.
The term "memory" came from an aerospace nickel-cadmium application in which the cells were repeatedly discharged to 25% of available capacity (plus or minus 1%) by exacting computer control, then recharged to 100% capacity without overcharge. This long-term, repetitive cycle régime, with no provision for overcharge, resulted in a loss of capacity beyond the 25% discharge point. True memory cannot exist if any one of the following conditions holds:
True memory-effect is specific to sintered-plate nickel-cadmium cells, and is exceedingly difficult to reproduce, especially in lower ampere-hour cells. In one particular test program designed to induce the effect, none was found after more than 700 precisely-controlled charge/discharge cycles. In the program, spirally-wound one-ampere-hour cells were used. In a follow-up program, 20-ampere-hour aerospace-type cells were used on a similar test régime. Memory effects showed up after a few hundred cycles.
Phenomena which are not true memory effects may also occur in battery types other than sintered-plate nickel-cadmium cells.
A common process often ascribed to memory effect is voltage depression. In this case, the peak voltage of the battery drops more quickly than normal as it is used, even though the total energy remains almost the same. In modern electronic equipment that monitors the voltage to indicate battery charge, the battery appears to be draining very quickly. To the user, it appears the battery is not holding its full charge, which seems similar to memory effect. This is a common problem with high-load devices such as digital cameras and cell phones.
Voltage depression is caused by repeated over-charging of a battery, which causes the formation of small crystals of electrolyte on the plates. These can clog the plates, increasing resistance and lowering the voltage of some individual cells in the battery. This causes the battery as a whole to seem to discharge rapidly as those individual cells discharge quickly and the voltage of the battery as a whole suddenly falls. This effect is very common, as consumer trickle chargers typically overcharge.