*** Welcome to piglix ***

Melting point depression


Melting-point depression is the phenomenon of reduction of the melting point of a material with reduction of its size. This phenomenon is very prominent in nanoscale materials, which melt at temperatures hundreds of degrees lower than bulk materials.

The melting temperature of a bulk material is not dependent on its size. However, as the dimensions of a material decrease towards the atomic scale, the melting temperature scales with the material dimensions. The decrease in melting temperature can be on the order of tens to hundreds of degrees for metals with nanometer dimensions.

Melting-point depression is most evident in nanowires, nanotubes and nanoparticles, which all melt at lower temperatures than bulk amounts of the same material. Changes in melting point occur because nanoscale materials have a much larger surface-to-volume ratio than bulk materials, drastically altering their thermodynamic and thermal properties.

This article focuses on nanoparticles because researchers have compiled a large amount of size-dependent melting data for near spherical nanoparticles. Nanoparticles are easiest to study due their ease of fabrication and simplified conditions for theoretical modeling. The melting temperature of a nanoparticle decreases sharply as the particle reaches critical diameter, usually < 50 nm for common engineering metals. Figure 1 shows the shape of a typical melting curve for a metal nanoparticle as a function of its diameter.

Melting point depression is a very important issue for applications involving nanoparticles, as it decreases the functional range of the solid phase. Nanoparticles are currently used or proposed for prominent roles in catalyst, sensor, medicinal, optical, magnetic, thermal, electronic, and alternative energy applications. Nanoparticles must be in the solid state to function at elevated temperatures in several of these applications.

Two techniques allow measurement of the melting point of nanoparticle. As described above, the electron beam of the transmission electron microscope (TEM) can be used to melt nanoparticles. The melting temperature is estimated from the beam intensity, while changes in the diffraction conditions to indicate phase transition from solid to liquid. This method allows direct viewing of nanoparticles as they melt, making it possible to test and characterize samples with a wider distribution of particle sizes. The TEM limits the pressure range at which melting point depression can be tested.


...
Wikipedia

...