The median is the value separating the higher half of a data sample, a population, or a probability distribution, from the lower half. For a data set, it may be thought of as the "middle" value. For example, in the data set {1, 3, 3, 6, 7, 8, 9}, the median is 6, the fourth largest, and also the fourth smallest, number in the sample. For a continuous probability distribution, the median is the value such that a number is equally likely to fall above or below it.
The median is a commonly used measure of the properties of a data set in statistics and probability theory. The basic advantage of the median in describing data compared to the mean (often simply described as the "average") is that it is not skewed so much by extremely large or small values, and so it may give a better idea of a 'typical' value. For example, in understanding statistics like household income or assets which vary greatly, a mean may be skewed by a small number of extremely high or low values. Median income, for example, may be a better way to suggest what a 'typical' income is.
Because of this, the median is of central importance in robust statistics, as it is the most resistant statistic, having a breakdown point of 50%: so long as no more than half the data are contaminated, the median will not give an arbitrarily large or small result.
The median of a finite list of numbers can be found by arranging all the numbers from smallest to greatest.
If there is an odd number of numbers, the middle one is picked. For example, consider the set of numbers
This set contains seven numbers. The median is the fourth of them, which is 6.
If there are an even number of observations, then there is no single middle value; the median is then usually defined to be the mean of the two middle values. For example, in the data set
the median is the mean of the middle two numbers: this is (4 + 5) ÷ 2, which is 4.5. (In more technical terms, this interprets the median as the fully trimmed mid-range.)