*** Welcome to piglix ***

Mechanically stabilized earth


Mechanically stabilized earth (MSE or reinforced soil) is soil constructed with artificial reinforcing. It can be used for retaining walls, bridge abutments, seawalls, and dikes. Although the basic principles of MSE have been used throughout history, MSE was developed in its current form in the 1960s. The reinforcing elements used can vary but include steel and geosynthetics.

MSE is the term usually used in the USA to distinguish it from the trade name "Reinforced Earth". Elsewhere "reinforced soil" is the generally accepted term.

MSE walls stabilize unstable slopes and retain the soil on steep slopes and under crest loads. The wall face is often of precast, segmental blocks, panels or geocells that can tolerate some differential movement. The walls are infilled with granular soil, with or without reinforcement, while retaining the backfill soil. Reinforced walls utilize horizontal layers typically of geogrids. The reinforced soil mass, along with the facing, forms the wall. In many types of MSE’s, each vertical fascia row is inset, thereby providing individual cells that can be infilled with topsoil and planted with vegetation to create a green wall.

The main advantages of MSE walls compared to conventional reinforced concrete walls are their ease of installation and quick construction. They do not require formwork or curing and each layer is structurally sound as it is laid, reducing the need for support, scaffolding or cranes. They also do not require additional work on the facing.

In addition to the flexibility of MSE walls in design and construction, seismic testing conducted on a large scale shaking table laboratory at the Japan National Institute of Agricultural Engineering (Tsukuba City), showed that modular block reinforced walls, and even more so geocell retention walls, retain sufficient flexibility to withstand large deformations without loss of structural integrity, and have high seismic load resistance. Highway overpasses along interstates often employ the INTER-LOK System.


...
Wikipedia

...