*** Welcome to piglix ***

Mechanical-electrical analogies


Mechanical-electrical analogies are the representation of mechanical systems as electrical networks. At first, such analogies were used in reverse to help explain electrical phenomena in familiar mechanical terms. James Clerk Maxwell introduced analogies of this sort in the 19th century. However, as electrical network analysis matured it was found that certain mechanical problems could more easily be solved through an electrical analogy. Theoretical developments in the electrical domain that were particularly useful where the representation of an electrical network as an abstract topological diagram (the circuit diagram) using the lumped element model and the ability of network analysis to synthesise a network to meet a prescribed frequency function.

This approach is especially useful in the design of mechanical filters—these use mechanical devices to implement an electrical function. However, the technique can be used to solve purely mechanical problems, and can also be extended into other, unrelated, energy domains. Nowadays, analysis by analogy is a standard design tool wherever more than one energy domain is involved. It has the major advantage that the entire system can be represented in a unified, coherent way. Electrical analogies are particularly used by transducer designers, by their nature they cross energy domains, and in control systems, whose sensors and actuators will typically be domain-crossing transducers. A given system being represented by an electrical analogy may conceivably have no electrical parts at all. For this reason domain-neutral terminology is preferred when developing network diagrams for control systems.

Mechanical-electrical analogies are developed by finding relationships between variables in one domain that have a mathematical form identical to variables in the other domain. There is no one, unique way of doing this; numerous analogies are theoretically possible, but there are two analogies that are widely used: the impedance analogy and the mobility analogy. The impedance analogy makes force and voltage analogous while the mobility analogy makes force and current analogous. By itself, that is not enough to fully define the analogy, a second variable must be chosen. A common choice is to make pairs of power conjugate variables analogous. These are variables which when multiplied together have units of power. In the impedance analogy, for instance, this results in force and velocity being analogous to voltage and current respectively.


...
Wikipedia

...