*** Welcome to piglix ***

Measurable cardinal


In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, and all singletons {α}, ακ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.

It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC.

The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930.

Formally, a measurable cardinal is an uncountable cardinal number κ such that there exists a κ-additive, non-trivial, 0-1-valued measure on the power set of κ. (Here the term κ-additive means that, for any sequence Aα, α<λ of cardinality λ < κ, Aα being pairwise disjoint sets of ordinals less than κ, the measure of the union of the Aα equals the sum of the measures of the individual Aα.)

Equivalently, κ is measurable means that it is the critical point of a non-trivial elementary embedding of the universe V into a transitive class M. This equivalence is due to Jerome Keisler and Dana Scott, and uses the ultrapower construction from model theory. Since V is a proper class, a technical problem that is not usually present when considering ultrapowers needs to be addressed, by what is now called Scott's trick.


...
Wikipedia

...