In physics, the maximum bubble pressure method, or in short bubble pressure method, is a technique to measure the surface tension of a liquid, with surfactants.
When the liquid forms an interface with a gas phase, a molecule on the border has quite different physical properties due to the unbalance of attracting forces by the neighboring molecules. At the equilibrium state of the liquid, interior molecules are under the balanced forces with uniformly distributed adjacent molecules.
However, relatively fewer number of molecules in the gas phase above the interface than condensed liquid phase makes overall sum of forces applied to the surface molecule direct inside of the liquid and thus surface molecules tend to minimize their own surface area.
Such an inequality of molecular forces induces continuous movement of molecules from the inside to the surface, which means the surface molecules has extra energy, which is called surface free energy or potential energy, and such an energy acting on reduced unit area is defined as surface tension.
This is a frame work to interpret relevant phenomena which occurs surface or interface of materials and many methods to measure the surface tension has been developed.
Among the various ways to determine surface tension, Du Noüy ring method and Wilhelmy slide method are based on the separation of a solid object from the liquid surface, and Pendant drop method and Sessile drop or bubble method depend on the deformation of the spherical shape of a liquid drop.