*** Welcome to piglix ***

Matter waves


All matter can exhibit wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. The concept that matter behaves like a wave is also referred to as the de Broglie hypothesis (/dəˈbrɔɪ/) due to having been proposed by Louis de Broglie in 1924. Matter waves are referred to as de Broglie waves.

The de Broglie wavelength is the wavelength, λ, associated with a massive particle and is related to its momentum, p, through the Planck constant, h:

Wave-like behavior of matter was first experimentally demonstrated by George Paget Thomson's thin metal diffraction experiment, and independently in the Davisson–Germer experiment both using electrons, and it has also been confirmed for other elementary particles, neutral atoms and even molecules. The wave-like behavior of matter is crucial to the modern theory of atomic structure and particle physics.

At the end of the 19th century, light was thought to consist of waves of electromagnetic fields which propagated according to Maxwell’s equations, while matter was thought to consist of localized particles (See history of wave and particle viewpoints). In 1900, this division was exposed to doubt, when, investigating the theory of black body thermal radiation, Max Planck proposed that light is emitted in discrete quanta of energy. It was thoroughly challenged in 1905. Extending Planck's investigation in several ways, including its connection with the photoelectric effect, Albert Einstein proposed that light is also propagated and absorbed in quanta. Light quanta are now called photons. These quanta would have an energy given by the Planck–Einstein relation:


...
Wikipedia

...