Mathematical notation is a system of symbolic representations of mathematical objects and ideas. Mathematical notations are used in mathematics, the physical sciences, engineering, and economics. Mathematical notations include relatively simple symbolic representations, such as the numbers 0, 1 and 2, function symbols such as sin, operator symbols such as +; conceptual symbols such as lim and dy/dx; equations and variables; and complex diagrammatic notations such as Penrose graphical notation and Coxeter–Dynkin diagrams.
A mathematical notation is a writing system used for recording concepts in mathematics.
The media used for writing are recounted below, but common materials currently include paper and pencil, board and chalk (or dry-erase marker), and electronic media. Systematic adherence to mathematical concepts is a fundamental concept of mathematical notation. (See also some related concepts: Logical argument, Mathematical logic, and Model theory.)
A mathematical expression is a sequence of symbols which can be evaluated. For example, if the symbols represent numbers, the expressions are evaluated according to a conventional order of operations which provides for calculation, if possible, of any expressions within parentheses, followed by any exponents and roots, then multiplications and divisions and finally any additions or subtractions, all done from left to right. In a computer language, these rules are implemented by the compilers. For more on expression evaluation, see the computer science topics: eager evaluation, lazy evaluation, and evaluation operator.