Math wars is the debate over modern mathematics education, textbooks and curricula in the United States that was triggered by the publication in 1989 of the Curriculum and Evaluation Standards for School Mathematics by the National Council of Teachers of Mathematics (NCTM) and subsequent development and widespread adoption of a new generation of mathematics curricula inspired by these standards.
While the discussion about math skills has persisted for many decades, the term "math wars" was coined by commentators such as John A. Van de Walle and David Klein. The debate is over traditional mathematics and reform mathematics philosophy and curricula, which differ significantly in approach and content.
The largest supporter of reform in the US has been the National Council of Teachers of Mathematics.
One aspect of the debate is over how explicitly children must be taught skills based on formulas or algorithms (fixed, step-by-step procedures for solving math problems) versus a more inquiry-based approach in which students are exposed to real-world problems that help them develop fluency in number sense, reasoning, and problem-solving skills. In this latter approach, conceptual understanding is a primary goal and algorithmic fluency is expected to follow secondarily. Advocates blame educators saying that failures occur not because the method is at fault, but because these educational methods require a great deal of expertise and have not always been implemented well in actual classrooms.
A backlash, which advocates call "poorly understood reform efforts" and critics call "a complete abandonment of instruction in basic mathematics," resulted in "math wars" between reform and traditional methods of mathematics education.
Those who disagree with the inquiry-based philosophy maintain that students must first develop computational skills before they can understand concepts of mathematics. These skills should be memorized and practiced, using time-tested traditional methods until they become automatic. Time is better spent practicing skills rather than in investigations inventing alternatives, or justifying more than one correct answer or method. In this view, estimating answers is insufficient and, in fact, is considered to be dependent on strong foundational skills. Learning abstract concepts of mathematics is perceived to depend on a solid base of knowledge of the tools of the subject.