*** Welcome to piglix ***

Mass-analyzed ion-kinetic-energy spectrometry


Mass-analyzed ion kinetic-energy spectrometry (MIKES) is a mass spectrometry technique by which mass spectra are obtained from a sector instrument that incorporates at least one magnetic sector plus one electric sector in reverse geometry (the beam first enters the magnetic sector). The accelerating voltage V, and the magnetic field B, are set to select the precursor ions of a particular m/z. The precursor ions then dissociate or react in an electric field-free region between the two sectors. The ratio of the kinetic energy to charge of the product ions are analyzed by scanning the electric sector field E. The width of the product ion spectrum peaks is related to the kinetic energy release distribution for the dissociation process.

MIKES was developed at Purdue University in 1973 by Beynon, Cooks, J. W. Amy, W. E. Baitinger, and T. Y. Ridley. MIKES was invented because researches at Purdue and Cornell thought that if the parent ion was mass-selected before the dissociation and mass analysis of the products by the electric sector it would be easier to study the metastable ions and the collision-induced dissociation (CID). This was an achievement because it combined the utility of previous instruments such as the ion kinetic energy spectrometer with the ability to mass select precursor ions. That precursor ion is mass selected with the magnetic sector. The dissociation products are than mass analyzed using the electric sector. "The peak shapes revealed from the electric sector scan can provide information on the kinetic energy release from in the course of fragmentation and on the kinetic energy uptake in the course of ionic collision processes." The dispersion of velocities due to kinetic energy release leads to the characteristic wide metastable peaks observed using MIKES techniques.


...
Wikipedia

...