*** Welcome to piglix ***

Martin's Axiom


In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay (1970), is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consistent with ZFC and the negation of the continuum hypothesis. Informally, it says that all cardinals less than the cardinality of the continuum, , behave roughly like . The intuition behind this can be understood by studying the proof of the Rasiowa–Sikorski lemma. It is a principle that is used to control certain forcing arguments.

For any cardinal k, we define a statement, denoted by MA(k):

For any partial order P satisfying the countable chain condition (hereafter ccc) and any family D of dense sets in P such that |D|k, there is a filter F on P such that Fd is non-empty for every d in D.


...
Wikipedia

...