Marker assisted selection or marker aided selection (MAS) is an indirect selection process where a trait of interest is selected based on a marker (morphological, biochemical or DNA/RNA variation) linked to a trait of interest (e.g. productivity, disease resistance, abiotic stress tolerance, and quality), rather than on the trait itself. This process is used in plant and animal breeding.
For example, using MAS to select individuals with disease resistance involves identifying a marker allele that is linked with disease resistance rather than the level of disease resistance. The assumption is that the marker associates at high frequency with the gene or quantitative trait locus (QTL) of interest, due to genetic linkage (close proximity, on the chromosome, of the marker locus and the disease resistance-determining locus). MAS can be useful to select for traits that are difficult or expensive to measure, exhibit low heritability and/or are expressed late in development. At certain points in the breeding process the specimens are examined to ensure that they express the desired trait.
The majority of MAS work in the present era uses DNA-based markers. However, the first markers that allowed indirect selection of a trait of interest were morphological markers. In 1923, Sax first reported association of a simply inherited genetic marker with a quantitative trait in plants when he observed segregation of seed size associated with segregation for a seed coat color marker in beans (Phaseolus vulgaris L. ). In 1935, Rasmusson demonstrated linkage of flowering time (a quantitative trait) in peas with a simply inherited gene for flower color.
Markers may be:
The following terms are generally less relevant to discussions of MAS in plant and animal breeding, but are highly relevant in molecular biology research: