In mathematics, Marden's theorem, named after Morris Marden but proven much earlier by Jörg Siebeck, gives a geometric relationship between the zeroes of a third-degree polynomial with complex coefficients and the zeroes of its derivative.
A cubic polynomial has three zeroes in the complex number plane, which in general form a triangle, and the Gauss–Lucas theorem states that the roots of its derivative lie within this triangle. Marden's theorem states their location within this triangle more precisely:
By the Gauss–Lucas theorem, the root of the double derivative p"(z) must be the average of the two foci, which is the center point of the ellipse and the centroid of the triangle. In the special case that the triangle is equilateral (as happens, for instance, for the polynomial p(z) = z3 − 1) the inscribed ellipse degenerates to a circle, and the derivative of p has a double root at the center of the circle. Conversely, if the derivative has a double root, then the triangle must be equilateral (Kalman 2008a).
A more general version of the theorem, due to Linfield (1920), applies to polynomials p(z) = (z − a)i (z − b)j (z − c)k whose degree i + j + k may be higher than three, but that have only three roots a, b, and c. For such polynomials, the roots of the derivative may be found at the multiple roots of the given polynomial (the roots whose exponent is greater than one) and at the foci of an ellipse whose points of tangency to the triangle divide its sides in the ratios i : j, j : k, and k : i.
Another generalization (Parish (2006)) is to n-gons: some n-gons have an interior ellipse that is tangent to each side at the side's midpoint. Marden's theorem still applies: the foci of this midpoint-tangent inellipse are zeroes of the derivative of the polynomial whose zeroes are the vertices of the n-gon.