*** Welcome to piglix ***

Many-minds interpretation


The Many-minds interpretation of quantum mechanics extends the many-worlds interpretation by proposing that the distinction between worlds should be made at the level of the mind of an individual observer. The concept was first introduced in 1970 by H. Dieter Zeh as a variant of the Hugh Everett interpretation in connection with quantum decoherence, and later (in 1981) explicitly called a many or multi-consciousness interpretation.The name many-minds interpretation was first used by David Albert and Barry Loewer in 1988.

The various interpretations of quantum mechanics typically involve explaining the mathematical formalism of quantum mechanics, or to create a physical picture of the theory. While the mathematical structure has a strong foundation, there is still much debate about the physical and philosophical interpretation of the theory. These interpretations aim to tackle various concepts such as:

The standard solution to the measurement problem is the "Orthodox" or "Cophenhagen" interpretation, which claims that the wave function collapses as the result of a measurement by an observer or apparatus external to the quantum system. An alternative interpretation, the Many-worlds Interpretation, was first described by Hugh Everett in 1957 (where it was called the relative state interpretation, the name Many-worlds was coined by Bryce Seligman DeWitt starting in the 1960s and finalized in the 70s). His formalism of quantum mechanics denied that a measurement requires a wave collapse, instead suggesting that all that is truly necessary of a measurement is that a quantum connection is formed between the particle, the measuring device, and the observer.

In the original relative state formulation, Everett proposed that there is one universal wavefunction that describes the objective reality of the whole universe. He stated that when multiple subsystems interact, the total system becomes a superposition of these subsystems. This includes observers and measurement systems, which become part of one universal state (the wavefunction) that is always described via the Schrödinger Equation (or its relativistic alternative). That is, they become entangled such that one cannot define one without the other. Thus, each subsystems state can only be described relative to each subsystem with which it interacts (hence the name relative state).


...
Wikipedia

...