*** Welcome to piglix ***

Manufacturing tolerance


Engineering tolerance is the permissible limit or limits of variation in:

Dimensions, properties, or conditions may have some variation without significantly affecting functioning of systems, machines, structures, etc. A variation beyond the tolerance (for example, a temperature that is too hot or too cold) is said to be noncompliant, rejected, or exceeding the tolerance.

A primary concern is to determine how wide the tolerances may be without affecting other factors or the outcome of a process. This can be by the use of scientific principles, engineering knowledge, and professional experience. Experimental investigation is very useful to investigate the effects of tolerances: Design of experiments, formal engineering evaluations, etc.

A good set of engineering tolerances in a specification, by itself, does not imply that compliance with those tolerances will be achieved. Actual production of any product (or operation of any system) involves some inherent variation of input and output. Measurement error and statistical uncertainty are also present in all measurements. With a normal distribution, the tails of measured values may extend well beyond plus and minus three standard deviations from the process average. Appreciable portions of one (or both) tails might extend beyond the specified tolerance.

The process capability of systems, materials, and products needs to be compatible with the specified engineering tolerances. Process controls must be in place and an effective Quality management system, such as Total Quality Management, needs to keep actual production within the desired tolerances. A process capability index is used to indicate the relationship between tolerances and actual measured production.

The choice of tolerances is also affected by the intended statistical sampling plan and its characteristics such as the Acceptable Quality Level. This relates to the question of whether tolerances must be extremely rigid (high confidence in 100% conformance) or whether some small percentage of being out-of-tolerance may sometimes be acceptable.

Genichi Taguchi and others have suggested that traditional two-sided tolerancing is analogous to "goal posts" in a : It implies that all data within those tolerances are equally acceptable. The alternative is that the best product has a measurement which is precisely on target. There is an increasing loss which is a function of the deviation or variability from the target value of any design parameter. The greater the deviation from target, the greater is the loss. This is described as the Taguchi loss function or "quality loss function", and it is the key principle of an alternative system called "inertial tolerancing".


...
Wikipedia

...