*** Welcome to piglix ***

Mann–Whitney U


In statistics, the Mann–Whitney U test (also called the Mann–Whitney–Wilcoxon (MWW), Wilcoxon rank-sum test, or Wilcoxon–Mann–Whitney test) is a nonparametric test of the null hypothesis that it is equally likely that a randomly selected value from one sample will be less than or greater than a randomly selected value from a second sample.

Unlike the t-test it does not require the assumption of normal distributions. It is nearly as efficient as the t-test on normal distributions.

Although Mann and Whitney developed the Mann–Whitney U test under the assumption of continuous responses with the alternative hypothesis being that one distribution is than the other, there are many other ways to formulate the null and alternative hypotheses such that the Mann–Whitney U test will give a valid test.

A very general formulation is to assume that:

Under more strict assumptions than those above, e.g., if the responses are assumed to be continuous and the alternative is restricted to a shift in location, i.e., F1(x) = F2(x + δ), we can interpret a significant Mann–Whitney U test as showing a difference in medians. Under this location shift assumption, we can also interpret the Mann–Whitney U test as assessing whether the Hodges–Lehmann estimate of the difference in central tendency between the two populations differs from zero. The Hodges–Lehmann estimate for this two-sample problem is the median of all possible differences between an observation in the first sample and an observation in the second sample.

The Mann–Whitney U test / Wilcoxon rank-sum test is not the same as the Wilcoxon signed-rank test, although both are nonparametric and involve summation of ranks. The Mann–Whitney U test is applied to independent samples. The Wilcoxon signed-rank test is applied to matched or dependent samples.


...
Wikipedia

...