In molecular biology, the term double helix refers to the structure formed by double-stranded molecules of nucleic acids such as DNA. The double helical structure of a nucleic acid complex arises as a consequence of its secondary structure, and is a fundamental component in determining its tertiary structure. The term entered popular culture with the publication in 1968 of The Double Helix: A Personal Account of the Discovery of the Structure of DNA, by James Watson.
The DNA double helix polymer of nucleic acid, held together by nucleotides which base pair together. In B-DNA, the most common double helical structure found in nature, the double helix is right-handed with about 10–10.5 base pairs per turn. This translates into about 20-21 nucleotides per turn. The double helix structure of DNA contains a major groove and minor groove. In B-DNA the major groove is wider than the minor groove. Given the difference in widths of the major groove and minor groove, many proteins which bind to B-DNA do so through the wider major groove.
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, (X,Y,Z coordinates in 1954) based upon the crucial X-ray diffraction image of DNA labeled as "Photo 51", from Rosalind Franklin in 1952, followed by her more clarified DNA image with Raymond Gosling,Maurice Wilkins, Alexander Stokes, and Herbert Wilson, and base-pairing chemical and biochemical information by Erwin Chargaff. The prior model was triple-stranded DNA.